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Problem 1

Your are the sales manager of a firm. Consider your firm’s supply
function y = f (p) where p denotes the price of a commodity and y
is the quantitiy of the same commodity.

Assume that the true function y = f (p) is unknown, but you know,
that the following points are located at the graph of the function:

1 (p1, y1) = (5; 35)
2 (p2, y2) = (5.1; 36.21)

Your boss wants you to estimate how much of the commodity your
firm would supply at a price of 20.
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The Taylor Theorem

Theorem
Given an arbitrary function f (x), if f (x0) is known and the value of
the derivatives at x0 (i.e. f ′(x0), f ′′(x0), etc.) are known, the
function f (x) can be expanded around the point x0 as follows:

f (x) =
[

f (x0)
0! + f ′(x0)

1! (x − x0) + f ′′(x0)
2! (x − x0)2

+... + f (n)(x0)
n! (x − x0)n

]
+ Rn

= F(x) + Rn

To approximate an unknown function, we are interested in F (x).
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The Taylor Theorem

Characteristics of the Taylor Theorem

The function f (x) must be infinitely differentiable in some
open interval around x = x0

The Remainder converges to zero as x approaches x0, i.e.
lim

x→x0
Rn = 0

Hence, the smaller the interval, the better the approximation
F (x)
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Approximation of univariate functions

0 Approximation of degree zero - the constant
approximation

F (x) = f (x0)
0! = f (x0)

Source: Own illustration based on Feldman (2014)
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Approximation of univariate functions

1 First-degree approximation - the linear approximation

F (x) = f (x0)
0! + f ′(x0)

1! (x − x0) = f (x0) + f ′(x0)(x − x0)

Source: Own illustration based on Feldman (2014)
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Approximation of univariate functions
2 Second-degree approximation - the quadratic
approximation

F (x) = f (x0)
0! + f ′(x0)

1! (x − x0) + f ′′(x0)
2! (x − x0)2

= f (x0) + f ′(x0)(x − x0) + 1
2 f ′′(x0)(x − x0)2

Source: Own illustration based on Feldman (2014)
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Problem 1 continued

1 (p1, y1) = (5; 35)
2 (p2, y2) = (5.1; 36.21)

f (p) = f (p1) + f ′(p1)(p − p1)

f (p2) != y2 = f (p1) + f ′(p1)(p2 − p1)

36.21 = 35 + f ′(p1)(5.1− 5)

⇒ f ′(p1) = 12.1
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Problem 1 continued
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Problem 1 continued

We want to find f (20)! Hence, p = 20.

f (p) = f (p1) + f ′(p1)(p − p1)

f (20) = 35 + 12.1(20− 5)

⇒ f (20) = 216.5

Answer: For a price of 20, your firm would supply 216.5 units
of the commodity.
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Problem 1 continued
In order to refine your approximation, your boss gives you another
data point, that he found out.

1 (p1, y1) = (5; 35)
2 (p2, y2) = (5.1; 36.21)

3 (p3, y3) = (4.9; 33.81)

Hence, you can now use the quadratic approximation!

f (p) = f (p1) + f ′(p1)(p − p1) + f ′′(p1)(p − p1)2

f (p2) != y2 = f (p1) + f ′(p1)(p2 − p1) + f ′′(p1)(p2 − p1)2

f (p3) != y3 = f (p1) + f ′(p1)(p3 − p1) + f ′′(p1)(p3 − p1)2

36.21 = 35 + f ′(p1)(5.1− 5) + f ′′(p1)(5.1− 5)2

33.81 = 35 + f ′(p1)(4.9− 5) + f ′′(p1)(4.9− 5)2
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Problem 1 continued

⇒ f ′(p1) = 12
⇒ f ′′(p1) = 1

We want to find f (20)! Hence, p = 20.

f (p) = f (p1) + f ′(p1)(p − p1) + f ′′(p1)(p − p1)2

f (20) = 35 + 12(20− 5) + 1(20− 5)2

⇒ f (20) = 440

Answer: For a price of 20, your firm would supply 440 units
of the commodity.
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Problem 1 continued
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Mathematical and Economic Applications

" [...] As it turned out, the Taylor series was of such importance
that Lagrange called it “the basic principle of differential calculus.”
Indeed, it plays a very important part in calculus as well as in
computation, statistics, and econometrics. As it is well known,
a calculator or computer can only add and, in fact, can deal only
with 0’s and 1’s. So how is it possible that you punch in a number
and then press a button, and the calculator finds the logarithm or
exponential of that number? Similarly, how can a machine capable
of only adding give you the sine and cosine of an angle, find
solutions to an equation, and find the maxima and minima of
a function? All these and more can be done due to the Taylor
series."
Dadkhah K. (2011) The Taylor Series and Its Applications. In: Foundations of Mathematical and Computational
Economics. Springer, Berlin, Heidelberg)
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